Artificial Intelligence for the control and
orchestration of mobile networks
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Network control and orchestration
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* Network management/orchestration is becoming more and more

complex
* Adapting to dynamics of a tangled environment = Anticipatory actions

e Distributed infrastructure, heterogeneity, new paradigms and use
cases...
e But, currently

e Network management is made by human, thus, optimize generic,
non-flexible, and manually designed objectives which will render

the promised goals impossible

e Solution?
e Towards zero-touch approaches === | Artificial Intelligence




Outline

oy =}

i

pe

=

\: E

w

=

- —
*
o
’ﬁ

networks

- Data Analytics and Al framework

- Analysis of benefits of Dynamic orchestration

- Realizing Dynamic orchestration with machine
learning
- Combining m achine learning with Intent-based

Networking




Data analytics and Artificial Intelligence for Orchestration
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 Artificial Intelligence is a natural choice for driving orchestration
decision

- We need to make predictions, classifications and decisions based on data

* 3GPP has identified this and is pursuing efforts towards defining an
Al-based Data Analytics

- Autonomous and efficient control, management and orchestration

 Modules defined by 3GPP to this end
- Network Data Analytics Function (NWDAF)
- Management Data Analytics Function (MDAF)




Al-based data Analytics framework
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Data analytics for the control plane
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* |n the control plane, analytics allow NFs to optimize their behavior
at run-time, typically at a much faster speed than what network
management and orchestration systems allow

* NWDAF analytics can be leveraged to improve

— Slice-level load balancing
— Service experience and Quality of Experience (QoE)

* Examples of data analytics usage
— NSSF: Selecting the set of Network Slice instances serving a UE

— PCF: Unified policy framework to govern network behavior, including the
QoS parameters

— NRF: Selection of a NF instance when a certain NF type is needed




Data analytics for the management plane
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* Data used as input by the Al-based analytics framework

— NFV Infrastructure (NFVI): knowledge on the computational resources’
capabilities (such as the type of CPU and memory, accelerators, etc.) along
with their availability (i.e., the status and utilization level)

- MANO system: requirements of the network slices

 Decision taken

— NFVO: NF placement and resource allocation decisions while ensuring that
the resulting resource allocation satisfies the respective slice SLA

— VNFM: Run-time up and down scaling of resources

- CSMF (Communication Service Management Function) and NSMF (Network
Slice Management Function (NSMF): Admission control of new slices




Artificial intelligence & data analytics
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* Alis a computation paradigm that endows machines with intelligence
— Aiming to teach them how to work, react, and learn like humans

— Many techniques fall under this broad umbrella

* Machine learning enables the artificial processes to absorb knowledge
from data and make decisions without being explicitly programmed

— Data needs to be collected and made availably to Al algorithms
— Machine learning is closely related to data analytics

* Machine learning has become very popular driven by:
— Modern challenges are “high-dimensional” in nature

— We have rich data sources and processing power that can be used to solve
problems

— Machine learning can be integrated into working software to support products
demanded by industry

* Inline with the rising popularity of machine learning, this tool is being
widely used for many networking problems including 5G
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- Data Analytics and Al framework

- Analysis of benefits of Dynamic orchestration

- Realizing Dynamic orchestration with machine
learning
- Combining m achine learning with Intent-based

Networking




Empirical evaluation of network slicing efficiency
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* Following a data driven approach we want to

— Quantify the price paid in efficiency when suitable algorithms for dynamic
resource allocation are not available, and the operator has to resort to
physical network duplication

— Evaluate the impact of sharing resources at different levels of the network,
including the cloudified core, the virtualized radio access, or the individual
antennas

— Outline the benefit of dynamic resource allocation at different timescales
under various slice specifications

e Methodology
— Our approach can be used for generic kinds of resource allocation

— Still, it is not an optimization, but rather an indication of how well slices will
behave
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Meeting slice requirements
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Efficiency evaluation
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We evaluate the efficiency of a multi-slice scenarios by
comparing
A sliced scenario in which we need to statically provision each

slice with the necessary resources to meet the slice
requirements

RZ =) > Y 7-7% (n).

seSceCr neT

A perfect slicing scenario, in which the exact amount of
resources are shared instantaneously among all slides

P, , = Z Z T - F.(n),

ceCr neT




Efficiency example
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Results
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- Data Analytics and Al framework
- Analysis of benefits of Dynamic orchestration
- Realizing Dynamic orchestration with machine

learning
- Combining m achine learning with Intent-based

Networking
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Capacity vs Demand forecasting

= Traditional approaches dea‘ DeepCog Lrecasting
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DeepCog
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= DeepCog’'s design follows a deep learning approach
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DeepCog
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- Data Analytics and Al framework

- Analysis of benefits of Dynamic orchestration

- Realizing Dynamic orchestration with machine
learning
- Combining machine learning with Intent-based

Networking




Intent-Based Networking (IBN)

 Human controller dictates high-level human-understandable intents

 They must be automatically interpreted and implemented by network
management entities.
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I oty andcomplionce_ translation
* E.qg., ensure high reliability to all Twitch OSS/BSS% =
traffic streaming from the Fusion Arena P
in Philadelphia in the next hour”. = A
[1M | m configurat on gg objective
* Impossible to define models to solve ——- —
each possible exact task

physical and virtual infrastructure

In anticipatory network management tasks we can not automatically optimise
not known a-priori metrics on-demand even with the most performing model
 E.g. end users QoE, depending on multiples KPIs




The Loss Learning Predictor (LossLeaP) approach

1)
—
=
-
—
7]
=
]

«
@
7=
=

networks

IBN objective

i label

training - .
legacy loss function

training
ﬂ loss-learning block L_j

l j anticipatory
- IBN action
predictor >

)

e Simple need of a Metric (no need differentiability/continuity)
* Adapt itself to any dataset without any external tuning
* (Can shape complex multi-dimensional loss functions




Global architecture
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Use case: maximize Incomes according to QoE
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* Full pipeline as objective and not only an objective function
* Traffic splitted using a probability distribution among users
* Empirical Model of QoE

* Discretized into a stepwise function

e Cost if presence of SLA violations / Cost of provided capacity

/ Operator \ (‘Service provider\
I—f/+ ]|{ " : M (— \ Nusers fﬁ\ )
QoL | MoS X 8
Split m%c():lEel Discretize > mo?jel
dy | A E
— — \ ) . V41
\ -[Copocity Cost } XX




Conclusions
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- 3GPP has defined a framework to leverage data analytics and
artificial intelligence to improve network performance

- Data-driven analyses show that performance can be very
substantially improved by dynamically orchestrating network
slices

- We have proposed a machine learning approach that realices
the potential, focusing on capacity provisioning rather than
simple prediction as existing approaches do

- In many cases loss functions are not known a priori

« We can learn the loss function from the feedback received

« This is a component for instant-based networking




