

Artificial Intelligence for the control and orchestration of mobile networks

Albert Banchs

Developing the Science of Networks

Network control and orchestration

Artificial Intelligence

- Network management/orchestration is becoming more and more complex
- Adapting to dynamics of a tangled environment ⇒ Anticipatory actions
 - Distributed infrastructure, heterogeneity, new paradigms and use cases...
- But, currently
 - Network management is made by human, thus, optimize generic, non-flexible, and manually designed objectives which will render the promised goals impossible
- Solution?
 - Towards zero-touch approaches

- Data Analytics and AI framework
- Analysis of benefits of Dynamic orchestration
- Realizing Dynamic orchestration with machine learning
- Combining m achine learning with Intent-based
 Networking

Data analytics and Artificial Intelligence for Orchestration

- Artificial Intelligence is a natural choice for driving orchestration decision
 - We need to make predictions, classifications and decisions based on data
- 3GPP has identified this and is pursuing efforts towards defining an AI-based Data Analytics
 - Autonomous and efficient control, management and orchestration
- Modules defined by 3GPP to this end
 - Network Data Analytics Function (NWDAF)
 - Management Data Analytics Function (MDAF)

AI-based data Analytics framework

Management plane

Control plane

nei

- In the control plane, analytics allow NFs to optimize their behavior at run-time, typically at a much faster speed than what network management and orchestration systems allow
- NWDAF analytics can be leveraged to improve
 - Slice-level load balancing
 - Service experience and Quality of Experience (QoE)
- Examples of data analytics usage
 - NSSF: Selecting the set of Network Slice instances serving a UE
 - PCF: Unified policy framework to govern network behavior, including the QoS parameters
 - NRF: Selection of a NF instance when a certain NF type is needed

Data analytics for the management plane

- Data used as input by the AI-based analytics framework
 - NFV Infrastructure (NFVI): knowledge on the computational resources' capabilities (such as the type of CPU and memory, accelerators, etc.) along with their availability (i.e., the status and utilization level)
 - MANO system: requirements of the network slices
- Decision taken
 - NFVO: NF placement and resource allocation decisions while ensuring that the resulting resource allocation satisfies the respective slice SLA
 - VNFM: Run-time up and down scaling of resources
 - CSMF (Communication Service Management Function) and NSMF (Network Slice Management Function (NSMF): Admission control of new slices

Artificial intelligence & data analytics

- Al is a computation paradigm that endows machines with intelligence
 - Aiming to teach them how to work, react, and learn like humans
 - Many techniques fall under this broad umbrella
- Machine learning enables the artificial processes to absorb knowledge from data and make decisions without being explicitly programmed
 - Data needs to be collected and made availably to AI algorithms
 - Machine learning is closely related to data analytics
- Machine learning has become very popular driven by:
 - Modern challenges are "high-dimensional" in nature
 - We have rich data sources and processing power that can be used to solve problems
 - Machine learning can be integrated into working software to support products demanded by industry
- In line with the rising popularity of machine learning, this tool is being widely used for many networking problems including 5G

- Data Analytics and AI framework
- Analysis of benefits of Dynamic orchestration
- Realizing Dynamic orchestration with machine learning
- Combining m achine learning with Intent-based Networking

Empirical evaluation of network slicing efficiency

- Following a data driven approach we want to
 - Quantify the price paid in efficiency when suitable algorithms for dynamic resource allocation are not available, and the operator has to resort to physical network duplication
 - Evaluate the impact of sharing resources at different levels of the network, including the cloudified core, the virtualized radio access, or the individual antennas
 - Outline the benefit of dynamic resource allocation at different timescales under various slice specifications
- Methodology
 - Our approach can be used for generic kinds of resource allocation
 - Still, it is not an optimization, but rather an indication of how well slices will behave

Network level & Aggregation

Meeting slice requirements

f 90% w 1 hour

We evaluate the efficiency of a multi-slice scenarios by comparing

 A sliced scenario in which we need to statically provision each slice with the necessary resources to meet the slice requirements

$$\mathbb{R}_{\ell,\tau}^{\mathbb{Z}} = \sum_{s \in \mathcal{S}} \sum_{c \in C_{\ell}} \sum_{n \in \mathcal{T}} \tau \cdot \hat{r}_{c,s}^{\mathbb{Z}}(n).$$

 A perfect slicing scenario, in which the exact amount of resources are shared instantaneously among all slides

$$\mathbb{P}_{\ell,\tau}^{\mathbb{Z}} = \sum_{c \in C_{\ell}} \sum_{n \in \mathcal{T}} \tau \cdot \hat{r}_{c}^{\mathbb{Z}}(n),$$

Efficiency example

Two large cities Three months of data Granularity in space: sector Granularity in time: 5 minutes 38 services in total

Either we allow such timescale, otherwise we don't have much gain over static

Reconfiguration sweetspot is here

- Data Analytics and AI framework
- Analysis of benefits of Dynamic orchestration
- Realizing Dynamic orchestration with machine learning
- Combining m achine learning with Intent-based
 Networking

Capacity vs Demand forecasting

Traditional approaches dea DeepCog brecasting

DeepCog's design follows a deep learning approach

DeepCog

DeepCog

Reference Case Studies

11

Results

- Data Analytics and AI framework
- Analysis of benefits of Dynamic orchestration
- Realizing Dynamic orchestration with machine learning
- Combining machine learning with Intent-based

Networking

Intent-Based Networking (IBN)

- Human controller dictates high-level human-understandable intents
 - They must be automatically interpreted and implemented by network management entities.
 - E.g., ensure high reliability to all Twitch traffic streaming from the Fusion Arena in Philadelphia in the next hour".
 - Impossible to define models to solve each possible exact task

- In anticipatory network management tasks we can not automatically optimise not known a-priori metrics on-demand even with the most performing model
 - E.g. end users QoE, depending on multiples KPIs

The Loss Learning Predictor (LossLeaP) approach

- Simple need of a Metric (no need differentiability/continuity)
- Adapt itself to any dataset without any external tuning
- Can shape complex multi-dimensional loss functions

Global architecture

Use case: maximize Incomes according to QoE

- Full pipeline as objective and not only an objective function
- Traffic splitted using a probability distribution among users
- Empirical Model of QoE
- Discretized into a stepwise function
- Cost if presence of SLA violations / Cost of provided capacity

- 3GPP has defined a framework to leverage data analytics and artificial intelligence to improve network performance
- Data-driven analyses show that performance can be very substantially improved by dynamically orchestrating network slices
- We have proposed a machine learning approach that realices the potential, focusing on capacity provisioning rather than simple prediction as existing approaches do
- In many cases loss functions are not known a priori
 - We can learn the loss function from the feedback received
 - This is a component for instant-based networking