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A note on UL–DL Distributional Invariance
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Distributional Invariance of the Uplink & Downlink
Invariance of

7 instantaneous UL & DL realizations (FDD systems⇒ no reciprocity in general)

3 UL & DL distributions

Distributional Invariance of the Uplink & Downlink:

“Sampling channel state information from the same prop-
agation environment in different frequency bands, but
still with similar radio propagation characteristics, repre-
sents approximately the same underlying probability dis-
tribution.”

Proof:
Not a rigorous proof, but there is some evidence by statistical hypothesis testing based on two-sample
tests, cf. Utschick et al, IEEE T-WC, 2022.
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An intuitive explanation (1)
Consider the simple case of a ULA with N antennas.
In this case the channel vector h is such that:

h ∝ [α0, α1, α2, . . . , αN−1]

with α = exp
(
−j 2πdf
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sin θ
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An intuitive explanation (2)
At the same time, for a different carrier frequency we have . . .
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An intuitive explanation (3)
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Small changes δf in the carrier frequency can be compensated by small changes δθ of θ, therefore h
is not changed if

f sin θ = (f + δf) sin (θ + δθ)
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Hypothesis Testing Based On Two-Sample Tests

IEEE
Trans W

C
2022
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Hypothesis Testing Based On Two-Sample Tests
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V. Rizzello, N. Turan, M. Joham, and W. Utschick. Two-sample Tests for Validating the UL-DL Conjecture in FDD systems. In Proceedings of the 17th
International Symposium on Wireless Communication Systems, Berlin, Germany, September 2021.

W. Utschick, V. Rizzello, M. Joham, Z. Ma and L. Piazzi “Learning the CSI Recovery in FDD Systems”, 2021, https://arxiv.org/abs/2104.01322.
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Why is this important?
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Because what really matters in machine
learning is the distribution of data!
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Because what really matters in machine

learning is the distribution of data!
ensembles
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Novel Design Options for FDD PHY Layer
Functions
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PHY Layer Functions Soley Based on UL-Data

MT

HULlearn fDNN(·)

DNN

collect UL data
BS

DNN feedback, CSI, etc.

share parameters

observation Y
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Application:

Channel Compression & Reconstruction
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Channel Compression & Reconstruction

1. Train an autoencoder solely based on UL CSI

DecEncH̃UL@BS HUL@BS

fθ(·) gφ(·)

• fθ : encoder neural net
zUL = fθ(H̃UL)

• gφ: decoder neural net
HUL u ĤUL = gφ(zUL).
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Channel Compression & Reconstruction

2. Offload the UL-trained encoder to each MTs in the cell

3. Compress the DL CSI at the MT

EncH̃DL@MT

offloaded
from BS:
fθ(·)

zDL = fθ(H̃DL)
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Channel Compression & Reconstruction

4. Feed the encoded DL CSI back to the BS

5. Decode the DL CSI at the BS with the UL-trained decoder

DecEncH̃DL@MT HDL@BS

offloaded
from BS:
fθ(·) CSI

feedback

HDL u ĤDL = gφ(zDL)
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Channel Compression & Reconstruction

DecEncH̃UL@BS HUL@BS

fθ(·) gφ(·)

DecEncH̃DL@MT HDL@BS

offloaded
from BS:
fθ(·) CSI

feedback

• not necessary to collect DL CSI data for training

• robust against Gaussian noise

V. Rizzello, W. Utschick, “Learning the CSI Denoising and Feedback Without Supervision”, 2021, https://arxiv.org/abs/2104.05002.
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Channel Compression & Reconstruction

Layer type Output shape #Parameters θ

Input 64 × 160 × 2 0
Conv2D, strides=2 32 × 80 × 8 152
Batch normalization 32 × 80 × 8 32
ReLU 32 × 80 × 8 0
Conv2D, strides=2 16 × 40 × 16 1168
Batch normalization 16 × 40 × 16 64
ReLU 16 × 40 × 16 0
Conv2D, strides=2 8 × 20 × 32 4640
Batch normalization 8 × 20 × 32 128
ReLU 8 × 20 × 32 0
Conv2D, strides=2 4 × 10 × 64 18496
Batch normalization 4 × 10 × 64 256
ReLU 4 × 10 × 64 0
Conv2D, strides=2 2 × 5 × 128 73856
Batch normalization 2 × 5 × 128 512
ReLU 2 × 5 × 128 0
Flatten 1280 0
Fully-connected 256 327936
Tanh 256 0

• autoencoder is based on convolutional layers instead of fully connected layers
=⇒ architecture can be easily scaled to high dimensional CSI
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Channel Compression & Reconstruction

• QuaDRiGa channel simulator

• Urban Microcell NLoS

• 58 paths

• training samples = 48 K

• validation/test samples = 2×6 K

• number of antennas = 64

• number of carriers = 160

• center frequency = 2.5 GHz

• frequency gap = 120 and 480 MHz
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Figure 1. UMi NLOS

4. Results intro
This report illustrates the results that can be submitted for
the Journal publication. In particular, the following points
are addressed here:

• The full cell is consider. This means that we removed
the restriction on having extremely high density.

• We compare different frequency-gap. Namely:

• We see how the MMD changes with different gaps,
how the null-hypothesis testing performs with different
gaps

• CDF and pdfs of the NMSE and Cosine similarity are
shown, together with the average values

• We will also test the trained CNN on another cell to
see how well it generalizes.

Before that it is important that a few comments are made on
QuaDRiGa.

5. Comment on QuaDRiGa channels
QuaDRiGa does not have a proper solution for FDD sys-
tems and offers two options for generating channels: single-
frequency and multi-frequency.
So far, the former has been used because of the small gap
(120 MHz) we had. The idea of this approach is to consider
a larger bandwidth and then to cut the portion of the band-
width that corresponds to the frequency gap.

However, what QuaDRiGa recommends for larger gaps is to
use the so called multi-frequency approach. Here we have
to specify as many center frequencies as we wish and for a
given environment we have:

• same positions for Base Station and Mobile Station

• cluster delays and angles for each multi-path compo-
nent are the same

• Spatial consistency of the large scale fading parameters
is identical.

On the other hand for each frequency we have:

• Path-loss is different for each frequency

• Path-powers are different for each frequency

• Delay and angular spreads are different

• K-Factor is different

• Cross-polarization ratio (XPR) of the NLOS compo-
nents is different.

These cause the channels to have different impulse responses
at each frequency, due to the fact that despite the environ-
ment is the same the channels changes because of the ran-
domness induced by the small scale fading parameters and
because of the parameters that change with the frequency.
However, for our task we can still use the multi-frequency
approach because we are not training UL-DL end to end
and therefore we do not need the exact pairs. Because of the
randomness induced by the small scale fading parameters,
with the multi-frequency approach the channels differ at the
same frequency as well.
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z

D[θ](θ, φ) D[φ](θ, φ)

Figure 2. UMi NLOijoS

In Figure ?? and ?? one can see the difference in the antenna
pattern between a ULA antenna and a 3GPP-3d antenna.
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Channel Compression & Reconstruction

• QuaDRiGa channel simulator

• Urban Microcell NLoS

• 58 paths

• training samples = 48 K

• validation/test samples = 2×6 K

• number of antennas = 64

• number of carriers = 160

• center frequency = 2.5 GHz

• frequency gap = 120 and 480 MHz
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4. Results intro
This report illustrates the results that can be submitted for
the Journal publication. In particular, the following points
are addressed here:

• The full cell is consider. This means that we removed
the restriction on having extremely high density.

• We compare different frequency-gap. Namely:

• We see how the MMD changes with different gaps,
how the null-hypothesis testing performs with different
gaps

• CDF and pdfs of the NMSE and Cosine similarity are
shown, together with the average values

• We will also test the trained CNN on another cell to
see how well it generalizes.

Before that it is important that a few comments are made on
QuaDRiGa.

5. Comment on QuaDRiGa channels
QuaDRiGa does not have a proper solution for FDD sys-
tems and offers two options for generating channels: single-
frequency and multi-frequency.
So far, the former has been used because of the small gap
(120 MHz) we had. The idea of this approach is to consider
a larger bandwidth and then to cut the portion of the band-
width that corresponds to the frequency gap.

However, what QuaDRiGa recommends for larger gaps is to
use the so called multi-frequency approach. Here we have
to specify as many center frequencies as we wish and for a
given environment we have:

• same positions for Base Station and Mobile Station

• cluster delays and angles for each multi-path compo-
nent are the same

• Spatial consistency of the large scale fading parameters
is identical.

On the other hand for each frequency we have:

• Path-loss is different for each frequency

• Path-powers are different for each frequency

• Delay and angular spreads are different

• K-Factor is different

• Cross-polarization ratio (XPR) of the NLOS compo-
nents is different.

These cause the channels to have different impulse responses
at each frequency, due to the fact that despite the environ-
ment is the same the channels changes because of the ran-
domness induced by the small scale fading parameters and
because of the parameters that change with the frequency.
However, for our task we can still use the multi-frequency
approach because we are not training UL-DL end to end
and therefore we do not need the exact pairs. Because of the
randomness induced by the small scale fading parameters,
with the multi-frequency approach the channels differ at the
same frequency as well.
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Figure 2. UMi NLOijoS

In Figure ?? and ?? one can see the difference in the antenna
pattern between a ULA antenna and a 3GPP-3d antenna.

Distributional invariance holds here!
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Channel Compression & Reconstruction
NMSE of different methods for SNR=10 dB.

−20 −15 −10 −5 0
0.0

0.2

0.4

0.6

0.8

1.0

ε2 [dB]

C
D

F(
ε2

[d
B

])

AE UL
AE DL 120 MHz
CsiNet (no noise) 120 MHz
IDFT 120 MHz
AE DL 480 MHz
CsiNet (no noise) 480 MHz
IDFT 480 MHz

−20 −15 −10 −5 0
0.0

0.2

0.4

0.6

0.8

1.0

ε2 [dB]

C
D

F(
ε2

[d
B

])

AE UL
AE DL 120 MHz
CsiNet (no noise) 120 MHz
IDFT 120 MHz
AE DL 480 MHz
CsiNet (no noise) 480 MHz
IDFT 480 MHz

22



Channel Compression & Reconstruction
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• achievable per-user rate in a multiuser scenario (8 user)
• zero-forcing precoding based on recovered DL CSI
• the hyperbolic tangent as activation function in the latent space makes easy to quantize the CSI
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Application:

Codebook Construction & Feedback
Generation
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Codebook Construction & Feedback Generation
Proposed concept: Training based soley on uplink (UL) data at the base station (@BS) and
subsequent offloading of trained deep neural networks to the mobile terminals (MTs) for feedback
generation, channel estimation, channel compression, etc.

MT

HULlearn fDNN(·)

DNN

collect UL data

Q
construct Q

BS

DNN feedback

share parameters

observation Y

• kind of distributed implementation of AI-aided physical layer functions

• offloading deep functionalities anywhere and anytime in the networks for increasing performance

N. Turan, M. Koller, S. Bazzi, W. Xu and W. Utschick, ”Unsupervised Learning of Adaptive Codebooks for Deep Feedback Encoding in FDD Systems.“ , 2021,
https://arxiv.org/abs/2105.09125.
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Urban Macrocell Scenario

3GPP 38.901 UMa, single carrier scenario:
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Urban Macrocell Scenario

3GPP 38.901 UMa, single carrier scenario:

Distributional invariance holds here!
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Urban Macrocell Scenario

3GPP 38.901 UMa, single carrier scenario:

• QuaDRiGa channel simulator

• MIMO channels: (BS antennas, MT antennas) = (16,4) or (32,16),

• non-line-of-sight (NLOS), line-of-sight (LOS) and outdoor-to-indoor (O2I)

• UL carrier frequency= 2.53GHz,

• DL carrier frequency= 2.73GHz,

• BS-ULA with “3GPP-3D” antennas,

• MT-ULA with ”omni- directional” antennas,

• BS placed at a height of 25m with a sector of 120◦,

• minimum distance of the MT location to the BS is 35m,

• maximum distance to the BS is 500m.

• 104 training, 2.5× 103 validation and ∼ 5× 103 test samples.
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Codebook Construction

Q

29



Codebook Construction
• unsupervised codebook design

• using the k-means algorithm based on the achievable date rate metric

• solely based on UL channel state information (CSI)

1. Divide the training setH into K clusters V(i)
k :

V(i)
k = {H ∈ H | r(H,Q

(i)
k ) ≥ r(H,Q

(i)
j ), k 6= j}.

2. Find new covariance matrices or update the so called “cluster centers”:

Q
(i+1)
k = argmax

Q�0

1

|V(i)
k |

∑
H∈V(i)

k

r(H,Q)

subject to trace(Q) ≤ ρ and rankQ ≤ Nrx.

Applying a projected gradient algorithm on the candidate set of precoding covariances:

gQ =
1

σ2
n ln(2)

∑
H∈V(i)

k

HH

(
I +

1

σ2
n

HQHH

)−1

H,

Q← Q + αgQ.
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Codebook Construction
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Ntx = 16, Nrx = 4, with different codebook sizes (2M )
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Application:

Channel Estimation
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Channel Estimation
UEs

Hi,UL
learn

CNN

collect UL data

D
H̃i,DL ←HT

i,UL

emulate DL
BS

CNN estimate HDL

share parameters

Downlink observations @MT:
Yi,DL = Hi,DLX + Zi

Emulated downlink system @BS:
Ỹi,DL = HT

i,ULX + Zi

B. Fesl, N. Turan, M. Koller, M. Joham, and W. Utschick, ”Centralized Learning of the Distributed Downlink Channel Estimators in FDD Systems using Uplink
Data.“ , 2021, https://arxiv.org/abs/2105.10746.
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Channel Estimation
NBS = 64, NMS = 4, NP = 64, mixed NLOS/LOS scenario, 20K training samples

−15 −10 −5 0 5 10 15 20
10−2

10−1

100

SNR [dB]

N
or

m
al

iz
ed

M
S

E

LMMSE (DL) LMMSE (UL)
LS genie OMP
ML AI (DL)

AI (UL)

34



Channel Estimation
NBS = 64, NMS = 4, NP = 64, mainly LOS scenario, 20K training samples
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Thank You!
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Links to Recent Work

- Channel Estimation, Prediction, and Extrapolation:

Learning The CSI Recovery in FDD Systems (IEEE T-WC 2022)
(https://arxiv.org/abs/2104.01322)

Centralized Learning of the Distributed Downlink Channel Estimators in FDD
Systems using Uplink Data (WSA 2021)
(https://arxiv.org/abs/2105.10746)

- Codebook Design and Feedback Generation in Multiuser MIMO Systems:

Learning The CSI Denoising and Feedback Without Supervision (SPAWC
2021)
(https://arxiv.org/abs/2104.05002)

Unsupervised Learning of Adaptive Codebooks for Deep Feedback
Encoding in FDD Systems (Asilomar 2021)
(https://arxiv.org/abs/2105.09125)
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Appendix
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Quantitative Analysis:

More About Two-Sample Tests
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MMD definition
The two-sample tests are based on the maximum mean discrepancy metric.
The maximum mean discrepancy is the distance between feature means:

MMD2(P,Q, k) := E[k(p, p′) + k(q, q′)− 2k(p, q)], (1)

where:

• k(·, ·) = 〈ϕ(·), ϕ(·)〉: positive definite kernel of a reproducing kernel Hilbert
space (RKHS) Hk with a feature map ϕ(·) ∈ Hk

• (p, p′) ∼ P× P
• (q, q′) ∼ Q×Q

Hence, MMD(P,Q, k) = 0 if and only if P = Q.
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Kernels descriptions

• “1-percentile”: σ = 1-percentile of the distance between points in the
aggregate sample

k(a, b) = exp

(
−‖a− b‖

2

σ2
1

)
• “median”: σ = 50-percentile of the distance between points in the aggregate

sample

k(a, b) = exp

(
−‖a− b‖

2

σ2
50

)
• “deep”: σ = 50-percentile of the distance between points in the aggregate

sample of the latent space of an autoencoder

k(a, b) = exp

(
−‖fθ(a)− fθ(b)‖2

σ2
50,latent

)
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Different frequency gaps in a UMi LOS scenario
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The larger the frequency gaps, the larger is the discrepancy between the UL & DL distributions.
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Over different UMi NLOS (∆f = 120 MHz)
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