

Practical Joint Communication and Sensing at Millimeter-Wave Frequencies

One6G - Open Lecture 3 on 6G testbed/simulation September 15, 2022

Joerg Widmer

Research Professor and Research Director

IMDEA Networks, Madrid, Spain

Developing the Science of Networks

Motivation

- Joint Communication and Sensing: more and more use cases depend on localization and sensing information
 - Lots of prior work over the past two decades, but only now the hardware capabilities are becoming sufficient for JCAS in more general settings

Smart factories, digital twins

Augmented/virtual reality, telepresence

Autonomous vehicles

- Experimental research is highly important
 - Actual performance depends critically on factors that are hard to model: real-world channel environment, hardware imperfections, calibration

Millimeter-Wave (mmWave) Systems

- mmWave frequencies are particularly interesting
 - Many GHz of spectrum available for multi-Gbit/s per user data rates
 - Very high levels of spatial reuse through highly directional antennas
- The same properties also enable highly accurate localization and sensing
- But what real-world accuracy can be achieve with inexpensive off-the-shelf devices?

Off-the-Shelf Devices as Research Platform

- Research using off-the-shelf devices is highly important
- IEEE 802.11ad 60GHz devices: TP-Link Talon AD7200
- Ported OpenWRT to the routers
 - Custom embedded Linux OS (open source)
 - Extended 802.11ad Linux drivers
- Nexmon framework for binary firmware patching
 - Custom extensions to the firmware
 - Modify beam training, beam forming, ...
 - CSI extraction

Joint work with TU Darmstadt and University of Brescia https://github.com/seemoo-lab/talon-tools https://github.com/IMDEANetworksWNG/MultiLoc

Fully Passive Angle-based mmWave Localization

- mmWave phased array with a single RF chain \rightarrow approaches like MUSIC, etc. do not work directly
- Extract angle of arrival/departure information from the beam-training
 - NO additional overhead for the location functionality
 - Use compressive estimation to get accurate angles from coarse beam patterns
 - Probe subset of antenna patterns, record signal strength

RF chain

Precoder

(+)

Zero-knowledge mm-wave Location System

- Unknown access point (AP) locations, unknown floor plan
- Location system based only on angle difference information

 $\mathbf{a}_i \in A_2$

Virtual anchor

Reflection

AP **P**TX

Wall

Terminal

- Using angle difference of arrival makes the problem rotation independent
- Several triangulation steps
 - Reflections are transformed into vectors departing from the position of the virtual anchor
 - Iterate over unknown position of terminal and unknown positions of (virtual) anchors
 - Needs user mobility over time
- Learn: make use of history of locations for refinement

Joan Palacios et al., "JADE: Zero-knowledge device localization and environment mapping for millimeter wave systems", IEEE Infocom, May 2017

Simultaneous Location and Mapping

- Estimate the user and anchors' locations
- Infer the boundaries of the environment and of obstacles using the points from which reflections originate

Location-Based Network Control for Resilience

CDF

- Evaluated in complex scenarios with walls
 - No outages and higher throughput

etworks

Mm-wave and Multi-band Localization

- Ported openWRT to more capable hardware (CSI+FTM)
 - Mikrotik wAP 60G: 32 element antenna arrays
 - Extremely accurate AoA (~1 deg.) and ranging (~10 cm) under LOS
 - BUT: very high error when no LOS path is present and an NLOS path is erroneously chosen
- Multi-band (mm-wave and sub-6 GHz) can help
 - Not to merge information (mm-wave is accurate enough), but
 - 1) To distinguish mm-wave LOS from NLOS paths
 OLOS paths available at sub-6 GHz which are not present at mm-wave
 → choose sub-6 GHz OLOS in case of NLOS at mm-wave
 - 2) To choose the best mm-wave antenna array (if multiple are present)
 - 3) And to provide localization when out of mm-wave coverage
- First open tool for CSI and FTM extraction for 802.11ad mmWave devices (<u>https://github.com/IMDEANetworksWNG/MultiLoc</u>)

Alejandro Blanco et al., "Augmenting mmWave Localization Accuracy Through Sub-6 GHz on Off-the-Shelf Devices", ACM MobiSys, June 2022

Multi-band Localization Performance

- Office scenario
- Measurements in 110
 positions distributed
 over 7 different areas
- Significant NLOS mmwave coverage
- Median location error 10 cm with 5 APs (top) and 20 cm with 2 APs (bottom)
- Sub-6 GHz information used wherever mmwave is unavailable

Platform for mmWave (and sub-6 GHz) Research

- COTS devices are a great experimentation tool, but PHY/signal processing research requires lower-level access to the waveforms
- Built open-source system based on Xilinx RFSoC board
 - Configurable data-paths for flexible bandwidth, MIMO-order
 - Memory-based design (to speed up prototyping), with hardware accelerators to support real-time functionality
 - Three basic modes of operation:
 - 8x8 MIMO at any sub-6 GHz frequency
 - 4x4 MIMO at mmWave via exchangeable RF frontends with up to 2 GHz of bandwidth per channel
 - Mixed configurations → multiple mmWave + sub-6 GHz interfaces

Mm-wave JCAS Micro-Doppler Estimation

- Wide bandwidth (0.4-2 GHz) required to track small movements
- Mono-static design: operate one MIMO RF chain as transmitter and one as receiver
 - Low self-interference due to directional mm-wave antennas
- Passive localization for multi-person tracking using beam training information (SLS, SSB)
- Micro-doppler extraction using a sequence of data packets with training fields (TRN, CSI-RS)

@imdea.org)

oerg Widme

- Phase estimation from Channel Impulse Response changes
- Sparse estimation to deal with random packet inter-arrival times
- Inter-arrival time determines maximum velocity, length of packet sequence determines velocity resolution
- ML-based activity recognition and person identification

Activity Recognition and Person Identification

- Detect and identify multiple people performing different activities at the same time in the same area
- Micro-Doppler signatures: frequency modulation on the returned signal that generates sidebands about the object's main Doppler frequency shift due to an object's micro-motion dynamics
- Well-known with a dedicated radar, difficult with data packets (ours is the first work to do this)

Activity recognition and person identification

ML-based design:

- Tracking of 1 to 5 subjects carrying out different activities
- Multi-AP view to deal with occlusion
- Accurate activity recognition
- Person identification with up to 7 subjects leads to 90-97 % accuracy

Predicted [%]

True [%]	Walking	Running	Sitting	Waving
Walking	92.9	0.8	6.2	0
Running	16.2	71.6	12.2	0
Sitting	0.2	0	99.8	0
Waving	3.3	0	6.8	89.9

Open Research Problems

- Robustness
 - There are still many cases where sensing/localization is inaccurate or fails entirely \rightarrow not good enough for some applications
 - Combining multiple systems/technologies may help
- Calibration
 - cm-level location accuracy requires that also the AP positions are known at cm-level accuracy
 - Phase calibration not relevant for communication but critical for angle estimation
 - Etc.

Extensions towards a real-time 5G/6G experimentation platform

- Alternatives: OpenAirInterface, srsRAN
 - Standard compliant, but complex; *very* difficult/impossible to support high data rates in a stable way
- Plans for our platform: less functionality, not compatible with COTS smartphones, but much higher performance, better modularity
- Simple FR1/FR2 implementation based on the MIMORPH platform
 - Detect synchronization signals (SSB) \rightarrow PSS, SSS, PBCH
 - CFO compensation
 - Acquisition of timing information
 - Channel estimation
 - Full OFDM symbol decoding: fixed sub-carrier spacing, MCS, LDPC rate, BW (i.e., FFT length)
 - 5G standard-compliant timing and frame format
- Future:
 - Full initial access procedure
 - Multiple spatial streams
 - Standard compliant integration with upper layers \rightarrow functional splits according to 3GPP

Conclusions

Practical Joint Communication and Sensing

- Not new topics by any means
- But very timely now, and of high practical relevance, especially in the context of 6G
 - Applications demanding both high rate data communication and accurate sensing information
 - Location information can help to deal with the increasing complexity mobile network control and the wireless physical layer
 - Intelligent reflective surfaces

Hardware is now just at the point where a lot of interesting applications become feasible (without too many limitations)
→ Requires *flexible*, *high-performance experimental platforms*

THANK YOU !

18

Joerg Widmer (joerg.widmer@imdea.org)

imidea networks