From Conventional to Semantic Communications based on Deep Learning

Professor Geoffrey Ye Li ITP Lab, Department of Electrical and Electronics Engineering Impeial College London London, UK

Outline

- Overview
- DL-based Conventional Communications
 - * Block-Wise
 - * End-to-End
- DL-based Semantic Communications
- Conclusions

Motivation

Challenges in current/conventional communication systems

- □ Mathematical models versus practical imperfection
- □ Block structures versus global optimality
- □ Complexity and performance of optimization
- □ Spectrum efficiency limited by Shannon capacity

Why deep learning?

- □ No need for models for data-driven method
- □ End-to-end loss optimization for global optimality
- Deep learning enabled end-to-end and semantic communications

Block Structure or End-to-End for Conventional Communications

Conventional Communications:

Transmit symbols or bits, following Shannon Limit

DL in Physical Layer Conventional Communications

- Z.-J. Qin, H. Ye, G. Y. Li, and B.-H. Juang, "Deep learning in physical layer communications," *IEEE Wireless Commun.*, vol. 26, no. 2, pp. 93-98, April 2019.
- H.-T. He, S. Jin, C.-K. Wen, F.-F. Gao, G. Y. Li, and Z.-B. Xu, "Model-driven deep learning for physical layer communications," *IEEE Wireless Commun*, vol. 26, no. 5, pp. 77- 83, Oct. 2019
- H. Ye, G. Y. Li, and B.-H. F. Juang, "Power of deep learning for channel estimation and signal detection in OFDM systems," IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 114 – 117, Feb. 2018.

From Symbol to Semantic Transmission

• Three Levels of Communications: Shannon and Weaver

- Transmission of symbols (Shannon Paradigm) following Shannon limit & well-developed near limit
- Semantic exchange of source information semantic communications (transmission of intelligence)
- Effects of semantic information exchange
- Semantic Communications: <u>Significantly improved efficiency</u>!

C. E. Shannon and W. Weaver, *The Mathematical Theory of Communication*. The University of Illinois Press, 1949.

Conventional Communications

- Only consider the data recovery accurately
- Information redundancy are removed in entropy-domain
- All information (including useless and irrelevant) is transmitted to the receiver, part is useless for the target network

Semantic Communications

- Feature networks and action networks considered
- Information redundancy removed in semantic domain
- > Only useful and relevant information transmitted to the receiver
- The features can serve different action networks

Outline

- Overview
- DL-based Conventional Communications
 - * Block-Wise
 - * End-to-End
- DL-based Semantic Communications
- Conclusions

Channel Estimation (CE) and Signal Detection (SD)

Related works:

- □ MMSE for channel estimation
- □ Neural networks and DL in equalization and decoding

> Challenges:

□ Nonlinear distortion and interference

Innovations:

- DL for joint channel estimation and symbol detection
- DL-based method: robust and insensitive to nonlinear distortion and interference

Traditional CE and SP mation for OFDM Systems with Rapid Dispersive Fading Channels

Ye (Geoffrey) Li, Senior Member, IEEE, Leonard J. Cimini, Jr., Senior Member, IEEE,

DL-based CE and SD

Input: received pilot OFDM block + received data OFDM block
 Output: recovered data

H. Ye, G. Y. Li, and B.-H. F. Juang, "Power of deep learning for channel estimation and signal detection in OFDM systems," *IEEE Wireless Commun. Lett.*, vol. 7, no. 1, pp. 114 – 117, Feb. 2018.

Model-Driven DL

- □ Relying on relatively accurate model
- Exploiting rich domain/expert knowledge
- Easy to train with a small amount of data
- Explainable and predictable neural networks
- Deep unfolding: a popular model-driven approach

H.-T. He, S. Jin, C.-K. Wen, F.-F. Gao, G. Y. Li, and Z.-B. Xu, "Model-driven deep learning for physical layer communications," *IEEE Wireless Commun*, vol. 26, no. 5, pp. 77-83, Oct. 2019.

Example: MIMO Detection

> MIMO System:

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n}$

- Goal: estimating x from received signal y and channel matrix H
- Conventional Detectors:

□ Optimal detector: ML detector, high complexity

□ Linear detectors: ZF, LMMSE, low complexity but poor performance

Iterative detectors: AMP-based detector, EP-based detector, excellent performance, moderate complexity, performance degradation with illconditioned channel matrix

Motivation: deep learning to perform iterative detection

H.-T. He, C.-K. Wen, S. Jin, and G. Y. Li, "Model-driven deep learning for MIMO detection," *IEEE Trans. Signal Process.*, vol. 68, pp. 1702-1715, March 2020.

Outline

- Overview
- DL-based Conventional Communications
 - * Block-Wise
 - * End-to-End
- DL-based Semantic Communications
- Conclusions

Why End-to-End Learning?

> Architecture:

- □ Representing both transmitter and receiver by DNNs
- □ Leaning to encode transmit symbols at transmitter
- □ Learning to recover transmit symbols at receiver

> Merits:

- Achieving global optimum
- Universal solution to different channels
- □ Beating current state-of-arts

E2E based on Reinforcement Learning

Reinforcement Learning Formation:

- Agent: transmitter
- □ Environment: channel + receiver
- □ States: source data
- □ Actions: transmit signals

Advantage and Disadvantage:

- Unnecessary for channel modeling
- □ Hard for continuous action in reinforcement learning

F. Aoudia, and J. Hoydis. "End-to-end learning of communications systems without a channel model," *arXiv* preprint arXiv: 1804.02276

E2E based on Conditional GAN

- Using CNN to address curse of dimentionity
- Conditional GAN: modelling the channel output distribution
- Surrogate of real channel when training the transmitter
- Received pilots as a part of conditioning for unknown channel

H. Ye, L. Liang, G. Y. Li, and B.-H. F. Juang, "Deep learning based end-to-end wireless communication systems with GAN as unknown channel," *IEEE Trans. Wireless Commun.*, vol. 19, no. 5, pp. 3133-3143, May 2020.

Performance for WINNER II Channels

Outline

- Overview
- DL-based Conventional Communications
 - * Block-Wise
 - * End-to-End
- DL-based Semantic Communications
- Conclusions

Information Content of English & Semantic Encoding

- Encoding English Words Letter-by-Letter
 - $\,\circ\,$ In English, on average there are 4.5 letters per word
 - \circ 5.5 characters per word if including space
 - 5 bits to encode each letter (26 letters)
 - o <u>27.5 bits/word</u> (5X5.5=27.5)

Need a codebook of 26 letters

- Encoding English Words Word-by-Word

 171,476 English words (from Google)
 18 bits/word (2¹⁷ < 171,476 < 2¹⁸)

 Need a codebook of 171,476 words
- Encoding English Semantically

 i.e., only 1 bits if answering YES or NO a question
 More Efficient!

 Need an extremely huge codebook

Example on Semantic Communications

Weaver (Semantic) Channel

W. Tong and G. Y. Li "Nine critical issues in AI and wireless communications to ensure successful 6G," to appear in *IEEE Wireless Commun.*, also at <u>https://arxiv.org/abs/2109.11320</u>, Aug. 2021.

Semantic Transceiver

Transceiver

• Channels

- Physical channel noise is caused by the physical channel impairment
 - AWGN, fading channels...
- Semantic channel noise refers to misunderstanding
 - Caused by interpretation error and disturbance in estimated information.

H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, "Deep learning enabled semantic communication systems," *IEEE Trans. Signal Process.* vol. 69, pp. 2663-2675, 2021, Apr. 2021.

Transceiver Structure

Transformer based semantic communication

- Merge the traditional communication and semantic into DNNs
- Transformer can learn the semantic in text
 - e.g., "it" completes pronoun reference "the animal"

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, "Attention is all you need," in *Advances Neural Info. Process. Systems (NIPS'17)*, Long Beach, CA, USA. Dec. 2017, pp. 5998–6008.

Loss Function

Loss function used to train the transceiver

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{CE}}(\mathbf{s}, \mathbf{\hat{s}}; \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\chi}, \boldsymbol{\delta}) - \lambda \mathcal{L}_{\text{MI}}(\mathbf{x}, \mathbf{y}; T, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

Cross-Entropy: Through reducing the loss value of channel encoder, the network can learn the syntax, phrase, the meaning of words

$$\mathcal{L}_{CE}(\mathbf{s}, \mathbf{\hat{s}}; \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\chi}, \boldsymbol{\delta}) = -\sum_{i=1}^{N} q(w_i) \log (p(w_i)) + (1 - q(w_i)) \log (1 - p(w_i))$$

> Mutual Information: maximizing achieved data rate

$$\mathcal{L}_{\mathrm{MI}}(\mathbf{X}, \mathbf{Y}; T) = \mathbb{E}_{p(x, y)} \left[f_T \right] - \log \left(\mathbb{E}_{p(x)p(y)} \left[e^{f_T} \right] \right)$$

Two-Step Training

- Maximizing mutual information
- Train the whole model

Performance Metrics

• BLEU score

Compare the difference between words in two sentences

$$\log \text{BLEU} = \min\left(1 - \frac{l_{\hat{\mathbf{s}}}}{l_{\mathbf{s}}}, 0\right) + \sum_{n=1}^{N} u_n \log p_n,$$

- l_{s} is the length of sentence **s**, $l_{\hat{s}}$ is the length of sentence \hat{s}

- p_n is the n-grams score, u_n is the weights of n-grams

• Sentence Similarity

Use siamese network to compute the semantic similarity

match
$$(\mathbf{\hat{s}}, \mathbf{s}) = \frac{\boldsymbol{B}_{\Phi} (\mathbf{s}) \cdot \boldsymbol{B}_{\Phi} (\mathbf{\hat{s}})^{T}}{\|\boldsymbol{B}_{\Phi} (\mathbf{s})\| \|\boldsymbol{B}_{\Phi} (\mathbf{\hat{s}})\|}$$

- $\mathbf{B}_{\Phi}(\cdot)$ is the BERT model

- Sentence, **s**, will be mapped into semantic vector space, $\mathbf{B}_{\Phi}(\mathbf{s})$, by BERT model
- Similarity is computed by measuring **distance** between $B_{\Phi}(s)$ and $B_{\Phi}(\hat{s})$

Simulation Setting

Dataset

The proceedings of the European Parliament

Proposed network architecture

- > Transmitter:
 - 3 layers of Transformer encoder and 2 dense layers
- Receiver:
 - 2 dense layers and 3 layers of Transformer decoder

Benchmark

- Deep Learning based joint source-channel coding (DL based JSC coding)
- Traditional methods
 - Source coding: Huffman coding
 - Channel coding: Turbo code
 - Modulation: 64-QAM

Simulation Results

- > All deep learning approaches are more competitive in the low SNR regime.
- The tendency in sentence similarity is much closer to human judgment.
 - In SNR = 12 dB, 20% BLEU score = approximate 0 sentence similarity
 - People are usually unable to understand the meaning of texts full of errors

Outline

- Overview
- DL-based Conventional Communications
 - * Block-Wise
 - * End-to-End
- DL-based Semantic Communications
- Conclusions

Conclusions

□ For Conventional Communications

*Robust to nonlinear distortion, interference, & frequency selectivity

*Improving performance of iterative detectors and adapt to complicated channels

□ End-to-end Communication Architecture

- * Enabling global optimization of transceiver
- * Potentially reducing the complexity

□ Semantic Communications

*Significantly improving transmission efficiency

*Future of wireless communications

