

Webinar • 19 June 2025

Al and Robotics in Agriculture

Luis Pérez Freire

AIOTI Agriculture Working Group

Context: future of EU agriculture

- "Agrifood systems that are more resilient, sustainable, competitive, profitable, and just"
- Produce more food of high quality with less resources and carbon footprint, protecting nature and biodiversity while fostering a globally sustainable and resilient farming sector.
 - "the sector operates within planetary boundaries and contributes to the protection and restoration of the climate, ecosystems, and natural resources, including water, soil, air, biodiversity, and landscapes

AIOTI active role in the process

White paper: the role of 6G in agriculture (May 2024)

https://aioti.eu/wp-content/uploads/6GIA-AIOTI-White-Paper-Agriculture-Final.pdf

AIOTI input to the Strategic Dialogue on the Future of EU Agriculture

https://aioti.eu/wp-content/uploads/AIOTIpaper-for-strategic-dialogue-on-the-future-of-EU-agriculture-Final-240731.pdf

AIOTI input to the Vision for EU Agriculture and Food (Feb'2025)

https://aioti.eu/wp-content/uploads/AIOTIinput-to-the-EU-agriculture-vision-Final.pdf

White paper: use of robots and AI in agriculture

(in preparation)

Role of digital technologies

From traditional agriculture to **precision agriculture**

- Integration of data-driven solutions, such as sensors, autonomous robots, data analytics, AI,... to optimize agricultural practices.
- Increase of productivity and food quality
- Reduction of environmental impact

ΑΙῶΤΙ

Enabling novel farming techniques: **vertical farming**

- Fine control of growth and health parameters
- Smart lighting
- Maximisation of productivity and food quality
- Minimisation of waste and environmental impact

Environmental and biodiversity monitoring

- Preservation of landscapes
 and biodiversity (CAP)
- Control of biodiversity (species), soil health, pollutants, ilegal activities, forests...

Main technology drivers

Data gathering, management,____ visualization, dashboard...

	Precision agriculture	Vertical farming	Environmental and biodiversity monitoring
Smart sensing and monitoring	XX	XXX	XX
Farm management systems	XXX	XXX	
Digital twins	XX	XXX	XX
AI for pattern identification, decision making, prediction, recommendation/advising, interfacing (GenAI)	XXX	XXX	XX
Autonomous and cooperative machines/robots	XX	XXX	X
Surveillance			XXX

Evolution of "big" ag machinery

- Intelligent systems
- Automation of agricultural operations (plants, animals)
- "Harversters"
- Monitors

Autonomous tractors/appliances

Robotic milking machines

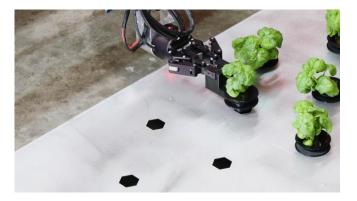
already here

Small-scale UxVs for automation of operations

- Lightweight platforms
- Low impact (e.g. soil compaction)
- Cost effective
- Energy efficient
- High granularity/precision
- Sensor-equipped
- Actuators embedded
- Autonomous operation

Prototypes, first deployments

UAV - Spraying of fertilisers


UGV - Crop monitoring

Precision robotics

- High-precision, delicate handling
- Selective harvesting
- Prunning
- Grafting
- Seeding

Selective picking

Seeding (hydroponic farming)

Prototypes, coming soon

. . .

Cooperative robots

- Coop with humans: augmenting workers instead of replacing
- Coop with other robots (swarm robotics)
 - Higher efficiency
 - Larger coverage

Harvesting and prunning cobot for grapes

Fleet of weed removers

Requirements in agriculture robotics relevant to 6G networks

- Accurate geo-location (indoor and outdoor)
- Autonomous decision making sensing and computing
- Safe operation in collaborative environment (esp. with human workers)
- The Inter-machines communication (incl. sensors) to enable cooperation
- Reliable communications for remote control of autonomous robots and actuators
- High-throughput communications for multisensorial data (including image/video)
- Generation Cybersecurity

Relevant 6G enablers

Global coverage

Remote areas Terrestrial and NTN networks

Low-latency and reliable (machine-type) communication

Dense network

Safety

Edge computing

Faster response for decision making Scalability

Al as a service

Offer native AI solutions taking into consideration reliability, trust, energy-efficiency, etc.

Integrated sensing and communications

Communications, sensing, positioning

Sustainability

- Energy efficiency:
 - Comms networks
 - Computation (ML and AI)
 - Sensors and actuators
- Environmentally friendly electronics

Thank you for listening

