one6G Working Groups
Defining the future of 6G in Europe
The one6G Working Groups bring together top experts from governments, industry, and academia to foster an ongoing discussion on issues related to 6G. Their work is dedicated to/focuses on:
Working Group 1: Use cases, KPIs and future market and business scenarios
Collecting and analysing 6G related use cases, scenarios and requirements.
Collection of 6G related Use Cases and related scenarios
This WI will target to define a collection of use cases and scenarios relevant in the time frame when 6G is commercial available (>2030). The use case description should not be limited to the KPI only. The description should also explain the scenario and the typical usage of devices or how the target application is used today and in the future. The emerging use cases from vertical domain are especially interesting in this work item.
The use case description builds a starting point and should be updated regularly in order to cover new ideas, new applications and new trends.
Working Group 2: Enabling Technologies and System Architecture
Shaping the overall technology foundation (higher frequencies, 6G radio building blocks, intelligent user plane / in-network computing, distributed / federated AI, next generation MIMO, integrated sensing and communication, and flexible programmable infrastructures).
Addresses High Frequencies
This WI will identify relevant scenarios and frequencies of interest for HF communication, based on the overall one6G use cases and scenarios defined by WG1. Then, it will perform a survey on existing channel measurements and modeling in selected frequencies. Based on the result of scenario selection and the results of the capabilities of HF in supporting those scenarios, it will identify and perform initial investigation of the main design challenges for HF communication.
6G Radio Building Blocks
The next generation will bring increased demand of data rates, higher frequency bands, increased density of mobile devices, enhanced requirements of security and extreme energy efficiency. This requires enhancing the widely used technologies such as waveform, modulation and coding, non-orthogonal multiple access, full-duplex, etc. to approach the theoretic limits, e.g. in terms of spectral and energy efficiency.
Intelligent User Plane, In-Network Computing
The new 6G architecture featuring full integration “applications-computation-network” will be impacted by the introduction of IUP and INC in Mobile Network. Network Simplification and optimal/flexible utilization of data plane resources are potential benefits to be researched:
- Potential RAN-Core convergence for specific needs to be investigated
- 6G subnetworks as new paradigm extending the 5G concepts of SPPN and PNI-NPN
- 6G Hybrid Cloud (Flat Network) distribute Private / Edge / Core / Public Cloud in One Network
Next Generation MIMO
Next Generation Multi-input multi-output (MIMO) is anticipated to become a key enabling technology for 6G. The Work Item ngMIMO is analyzing the potential of promising new concepts like Cell-free MIMO, Intelligent Reflecting Surfaces (IRS), AI/ML-enabled distributed MIMO, as well as new trends and solutions in antenna technologies.
Integrated Sensing and Comm.
- Integrating sensing in a communication waveform (i.e., OFDM)
- Optimized spectral allocation and suitable transmission parameters for the combined use of sensing parameter estimation and communications
- Investigation of communication systems with very large RF bandwidths (several GHz) for sensing but with low complexity (i.e., stepped or sparse OFDM)
- Integrating communication in a sensing waveform (i.e., FMCW)
- New waveforms for integrated communication and sensing, e.g., orthogonal time frequency space modulation (OTFS)
- Full duplex capability and dynamic range for monostatic arrangements and methods for
Flexible Programmable Infrastructures
WI scope is to lay out the foundations of scalable programmable infrastructures suitable for 6G that focuses on several aspects such as:
- Holistic, unified view on resources as a distributed set of compute, network & terminal elements
- Resilient, flexible and in-band control realized as a distributed system on one set of resources
- Support for inclusion of resources through their discovery and on-the-fly inclusion / Declarative, more expressive network infrastructure programming approach
It is rooted in a number of requirements and expectations that 6G is sought to fulfil, such as, among others: the need to provide support for full service execution, rather than supporting just connectivity sessions between points in the network, and the need to integrate making of informed, runtime decisions (scheduling) as part of normal network operation, which would enable automation, efficient usage of resources and better service quality as seen by the end user.
6G non-terrestrial networks
Non-terrestrial networks (NTN) specify radio access networks where the access nodes (in particular base stations) are carried on platforms hovering high above the terrestrial surface in the air (high-altitude platforms – HAPs, such as drones or balloons) or in space (satellites). Latest technology advances of NTN-based communication and its integration into terrestrial radio networks (TN) facilitates ubiquitous connectivity for nearly all types of services, which enables novel use cases with guaranteed service availability anytime and everywhere. This work item aims to elaborate on these type of novel use cases and the related challenges to be addressed, and to investigate on novel technologies towards the integration and convergence of NTN and TN.
The deadline of the deliveries should be aligned with important events, e.g. in the SatCom business and standardization.
Working Group 3: Communication and Dissemination
Community building and promotion (6G position paper, web portal, events, newsletter/news, liaisons with related initiatives, webinars, etc.).
6G Positioning Paper
The scope of this working item is to draft and publish a 6G positioning paper by one6G Association.
Dissemination
This working item aims to manage the communications between one6G and external audience, partners, organizations, etc.
Working Group 4: Evaluation, Testbeds and Pilots
From development to deployment (integrated sensing and communication, testing procedures and certification, testbeds and trials).
Evaluation guidelines for all simulation, emulation and prototyping activities
- One of the major objectives of this work item is the definition of the evaluation guidelines for all simulation and emulation activities in the project
- The expected outcome is a “Guidelines for Validation and Testing” which aims for collecting relevant inputs from all other working groups regarding validation and test purposes
- Objectives are alignment of essential definitions important to minimize the level of misunderstandings in the joint work.
- Propose a framework for the cooperation and dependencies between the working groups among themselves and the work items.
- Due to the fact that the community has very much different interests starting from radio layer design and up to the AI related network architecture it is valuable to provide an overview different simulator systems and frameworks usually used
- The guideline therefore also proposes cooperation between the one6g partners to create joint simulation frameworks. It is not limited to simulation; more intensive cooperation can also include the exchange of measurement and AI training data or even the interconnection of prototypes from different partners and to invite for hackathons events.
- Furthermore, a methodology framework for simulations, emulations and demonstrations is proposed and references to 3GPP for system level and link level simulation assumptions.
- Guidelines for verification and validation based on prototypes including the definition of different test types. Last but not least the report gives a proposal about the tasks to align of Architecture Models provided by WI and other WG.
Joint work item with WG2 to build demonstrators for integrated Sensing, Gesture Control and Communication
- WG2 will perform the theoretical analysis and simulations.
- Furthermore it is necessary to demonstrate and prove candidates of the key components and functions by prototypes and functional demonstrations.
- Besides many other trends integrated communication and sensing is identified as essential technology for 6G.
- This joint Work Item between WG4 and WG2 aims to demonstrate the functionalities and advantages of “Integrated Communication and Sensing” .It should demonstrate how imaging of objects or human bodies can be done by using mobile radio technologies and whether it is possible to interpret gestures of humans in order to give meaningful instruction to machines, robots or moving vehicles.